TurMass™ P2P 开发套件

术语缩略语

V1. 0

修订记录

修订时间	修订版本	修订描述
2023-03-28	V1.0	初始版本

重要声明

版权所有 © 上海道生物联技术有限公司 2023。保留一切权利。

非经本公司书面许可,任何单位和个人不得对此文档的全部或部分内容进行使用、复制、修改、抄录,并 不得以任何形式传播。

TurMass[™] 为上海道生物联技术有限公司的商标。本文档提及的其他所有商标或注册商标,由各自的所有人拥有。

上海道生物联技术有限公司保留随时变更、订正、增强、修改和改良此文档的权利,本文档内容可能会在未提前知会的情况下不定期进行更新。

除非另有约定,本文档仅作为使用指导,本文档中的所有陈述、信息和建议都依赖于具体的操作环境,并且不构成任何明示或暗示的担保。

联系方式

地址: 上海嘉定皇庆路 333 号上海智能传感器产业园区 4 幢 5 层

邮编: 201899

电话: 021-61519850

邮箱: <u>info@taolink-tech.com</u> 网址: www.taolink-tech.com

目录

1	术语	. 1
2	缩略语	. 3

1 术语

1.通信方式

TK8610 芯片支持灵活配置收发频率、速率、时隙等参数,按照是否支持 MAC 层协议,目前可以分为 P2P 通信方式和 MAC 通信方式,不同通信方式采用不同的烧录固件。

在 P2P 通信方式下,设备支持基于时间片划分上行时隙和下行时隙的时隙方式传输,或是基于 ALOHA 的突发模式传输。时隙模式传输的优点在于上下行完全不冲突,突发模式传输的优点在于延时小功耗低。

在 MAC 通信方式下,设备内置完整的 TurMass MAC 协议栈,可以自动实现设备的入网搜索、设备注册、数据加解密等功能。MAC 通信方式下的设备,按照是否支持实时下行控制和供电方式的不同,可以分为 Class A 和 Class C 两种。Class A 类设备通常采用电池供电,业务以主动上行发送为主,常态处于休眠状态;Class C 类设备通常采用外供电方式,支持实时的下行控制,设备一直处于接收监听状态。

2.突发模式传输

突发模式传输常见于低功耗数据采集的场景,设备通常大部分时间处于休眠低功耗状态, 当特定事件发生(例如 IO 中断、定时、无线唤醒等),设备会立即醒来,完成数据采集和 无线上报后,重新恢复休眠状态。

3.时隙模式传输

时隙模式传输常用于需要频繁双向通信的应用场景。时隙模式传输会将时间划分成若干个固定长度的时间片断,即时隙,用户通信以时隙为单位,通常按照功能不同时隙可以分为上行时隙、下行时隙等,时隙模式传输下能够实现上/下行通信的零碰撞冲突

4.速率模式

TK8610 芯片支持多种不同速率,每一种速率对应不同的调试、编码和带宽等参数,目前暂时只开放了模式 7~模式 18 共计 12 种速率,覆盖 202bps~82.5kbps 速率范围。

5.BCN 模式

TK8610 芯片支持 2 种类型的信标: BCN1.0 和 BCN2.0。BCN 1.0 有 1~7 共 7 种模式, BCN2.0 支持 1~6 共 6 种模式, 它们具有不同的带宽和灵敏度。通常用户可以不关心具体 BCN 模式, 每一种速率模式会自动选择合适的 BCN 信标。

6.TurMass MAC 协议

一种功能上类似 LoraWAN 的链路协议,用于实现设备的入网鉴权、注册、数据加解密等功能。

7.入网模式

采用 TurMass MAC 协议的设备,支持两种入网模式: OTAA 入网模式 (空中激活)和 ABP 入网模式 (预激活)。OTAA 入网模式终端需要与网络服务器 NS 进行交互,完成鉴权成功后,才能进行数据收发。ABP 入网模式终端已预先配置好了秘钥,可以直接进行数据收发。

8.信道侦听

TK8610 通过对天线接收到的空中信号进行检测,计算出接收信号的强度,用于判断是 否存在干扰信号或其它 TurMass 设备正在进行数据发送。设备可采取随机延时或更换工作频 率等方式避免干扰或碰撞。

9.休眠状态

TK8610 芯片进入休眠状态后,内部射频单元、基带处理单元、控制 MCU 的电源均会关闭,只有很少一部分低功耗电路处于工作状态,监测外部 GPIO 事件或是空中无线唤醒事件的发生,以达到省电的目的。

10.无线唤醒

TK8610 进入休眠状态后,可周期性的启动监听空中无线信号,如果检测到包含特定唤醒 ID 的无线唤醒信号,立即启动进入工作状态。

11.唤醒源

TK8610 进入休眠状态后,唤醒 TK8610 的方式,一共包含 3 种唤醒源: GPIO 唤醒、RTC 定时唤醒和无线唤醒。

12.唤醒 ID

TK8610 发送或接收的无线唤醒信号中,可以携带一个特定的 ID 值,用于区分不同的唤醒终端,用于实现对特定单一设备或一组设备的唤醒。唤醒 ID 取值范围 1~720,共 720 个。

2 缩略语

名称	英文全称	中文全称
AT	Attention	AT 指令
BCN	Beacon	信标
GPIO	General-Purpose Input/Output	通用型输入输出接口
I2C	Inter-Integrated Circuit	集成电路总线
MAC	Medium Access Control	介质访问控制
P2P	Peer-to-peer	点对点
PAC	Product Application Code	产品应用代码
PMP	Point to Multipoint	点对多点
PWM	Pulse Width Modulation	脉冲宽度调制
RTC	Real Time Clock	实时时钟
RSSI	Received Signal Strength Indication	接收信号强度指示
SOC	System on Chip	系统级芯片
SPI	Serial Peripheral Interface	串行外部设备接口
TXP	TX Power	发射功率
UART	Universal Asynchronous Receiver/Transmitter	通用异步收发传输器
WATCHDOG	Watch Dog	看门狗