TK8610 芯片固件烧录协议

使用说明书

V1. 0

修订记录

修订时间	修订版本	修订描述
2023-3-28	V1.0	初始版本

重要声明

版权所有 © 上海道生物联技术有限公司 2023。保留一切权利。

非经本公司书面许可,任何单位和个人不得对此文档的全部或部分内容进行使用、复制、修改、抄录,并不得以任何形式传播。

TurMass[™] 为上海道生物联技术有限公司的商标。本文档提及的其他所有商标或注册商标,由各自的所有人拥有。

上海道生物联技术有限公司保留随时变更、订正、增强、修改和改良此文档的权利,本文档内容可能会在未提前知会的情况下不定期进行更新。

除非另有约定,本文档仅作为使用指导,本文档中的所有陈述、信息和建议都依赖于具体的操作环境,并且不构成任何明示或暗示的担保。

联系方式

地址: 上海嘉定皇庆路 333 号上海智能传感器产业园区 4 幢 5 层

邮编: 201899

电话: 021-61519850

邮箱: <u>info@taolink-tech.com</u> 网址: <u>www.taolink-tech.com</u>

目录

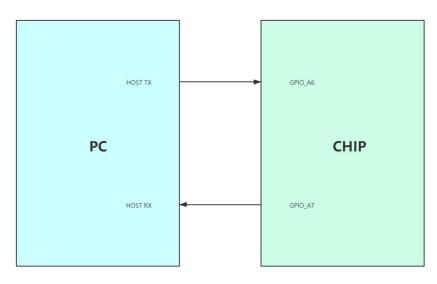
1	概述	1
2	功能和规格	2
3	运行环境	3
	3.1 硬件环境	3
	3.2 软件环境	
4	使用说明	4
	4.1 软件的部署	
	4.2 配置和操作	4
	4.2.1 UART 参数配置	
	4.3 协议介绍	
	4.3.1 数据帧格式	4
	4.3.2 协议命令集	4
	4.4 实现细节	8
	4.4.1 握手交互部分	9
	4.4.2 烧录交互部分	
	4.5 注意事项	. 15

1 概述

TK8610 芯片固件烧录协议是道生物联自主开发的一套通讯协议,用于上位机工具对芯片的 FLASH 进行擦除、固件烧录和固件读取。

2 功能和规格

功能	说明		
握手	通过握手判断通讯稳定性和正确性		
波特率自适应	TK8610 芯片支持动态修改波特率 115200bps/921600bps		
	默认为 115200bps,芯片根据上位机的波特率自动适配。		
Flash 操作	支持擦除、写入和读取		
校验	烧录过程带校验		



3 运行环境

支持 UART 接口的任何设备均可以根据本协议实现对 TK8610 芯片的固件烧写。

3.1 硬件环境

TK8610 终端芯片开发板或等同的模组等。如用 PC 机开发本协议,硬件接口部分如下图 所示:

3.2 软件环境

略。

4 使用说明

4.1 软件的部署

本协议可被部署在任何支持 UART 接口的设备上, 实现对 TurMass TK8610 芯片的固件烧录。

4.2 配置和操作

UART 接口须支持波特率 115200bps 或 921600bps。

4.2.1 UART 参数配置

波特率	115200bps (默认),支持配置命令
数据位	8
停止位	1
校验位	无
硬件流控	无

4.3 协议介绍

4.3.1 数据帧格式

命令类型	参数(数据遵循小端模式(Little-endian)
1 Byte	6 Bytes

4.3.2 协议命令集

命令类型	值	描述
OPCODE_WRITE	0x02	写 flash
OPCODE_WRITE_ACK	0x03	写 flash 响应
OPCODE_WRITE_RAM	0x04	写 RAM 操作
OPCODE_WRITE_RAM_ACK	0x05	写 RAM 反馈
OPCODE_READ	0x08	读 flash
OPCODE_READ_ACK	0x09	读 flash 响应
OPCODE_ERASE	0x0C	擦除 flash(sector/block)
OPCODE_ERASE_ACK	0x0D	擦除 flash(sector/block)响应
OPCODE_DISCONNECT	0x10	断开 host 连接
OPCODE_DISCONNECT_ACK	0x11	断开 host 连接响应
OPCODE_CHANGE_BAUDRATE	0x12	修改波特率
OPCODE_CHANGE_BAUDRATE _ACK	0x13	修改波特率响应
OPCODE_EXECUTE_CODE	0x15	执行 code 命令

OPCODE_EXECUTE_CODE_END	0x17	执行 code 响应	
OPCODE_CALC_CRC32 0		CRC32 校验命令	
OPCODE_CALC_CRC32_ACK 0x1a		CRC32 校验回复	
OPCODE_UNLOCK_FLASH	0x1f	解锁 flash(只能在 patch 中执行)	
OPCODE_UNLOCK_FLASH_ACK 0x2		解锁 flahs 回复(只能在 patch 中执行)	
OPCODE_LOCK_FLASH 0x21		锁定 flash(只能在 patch 中执行)	
OPCODE_LOCK_FLASH_ACK 0x2		锁定 flash 回复(只能在 patch 中执行)	

4.3.2.1 OPCODE_WRITE

字段	大小	值	描述
命令	1	0x02	
地址	4	address	Flash 地址
长度	2	length	数据长度(最大 16K)
数据	length		数据内容(最大 16K)

4.3.2.2 OPCODE_WRITE_ACK

字段	大小	值	描述
命令	1	0x03	
地址	4	address	Flash 地址
长度	2	length	数据长度

4.3.2.3 OPCODE_READ

字段	大小	值	描述
命令	1	0x08	
地址	4	address	Flash 地址
长度	2	length	数据长度

4.3.2.4 OPCODE_READ_ACK

字段	大小	值	描述
命令	1	0x09	
地址	4	address	Flash 地址
长度	2	length	数据长度
数据	length		数据内容

4.3.2.5 OPCODE_DISCONNECT

字段	大小	值	描述
命令	1	0x10	

参数	1	0x01	后续操作
			0- 不退出交互模式
			1- 退出交互模式
填充	5	0	填充数据 0

4.3.2.6 OPCODE_ DISCONNECT _ACK

字段	大小	值	描述
命令	1	0x11	
填充	6	Dummy	No care

4.3.2.7 OPCODE_CHANGE_BAUDRATE

字段	大小	值	描述
命令	1	0x12	
波特率	1	0x0B	波特率 bps
			0x00 - 1200
			0x01 - 2400
			0x02 - 4800
			0x03 - 9600
			0x04 - 14400
			0x05 – 19200
			0x06 - 38400
			0x07 – 57600
			0x08 - 115200
			0x09 - 230400
			0x0A - 460800
			0x0B - 921600
填充	5	0	填充数据 0

4.3.2.8 OPCODE_CHANGE_BAUDRATE_ACK

字段	大小	值	描述
命令	1	0x13	
填充	6	Dummy	No care

4.3.2.9 OPCODE_ERASE

字段	大小	值	描述
命令	1	0x0C	
地址	4	address	Flash Erase 起始地址(flash 每次自起始地址自动擦除 4K 大小,

			下次擦除起始地址需+4K)
长度	2	length	填充数据 0

4.3.2.10 OPCODE_ ERASE _ACK

字段	大小	值	描述
命令	1	0x0D	
地址	4	address	Flash Erase 起始地址
长度	2	length	No care

4.3.2.11 OPCODE_CALC_CRC32

字段	大小	值	描述
命令	1	0x19	
地址	4	address	校验起始地址(传送
			地址值需要为绝对地
			址即:
			address 0xc2000000)
长度	2	length	填充数据 0x08
数据	8	校验长度	前四字节填需要校验
			的长度, 后四字节填 0

4.3.2.12 OPCODE_CALC_CRC32 _ACK

字段	大小	值	描述
命令	1	0x1a	
地址	4	校验值	Crc32 校验值
长度	2	length	No care

4.3.2.13 OPCODE_UNLOCK_FLASH

字段	大小	值	描述
命令	1	0x1f	
填充	6	Dummy	No care

4.3.2.14 OPCODE_UNLOCK_FLASH_ACK

字段	大小	值	描述
命令	1	0x20	
填充	6	Dummy	No care

4.3.2.15 OPCODE_LOCK_FLASH(锁定地址 0 - 0x5ffff)

命令	1	0x21	
填充	6	Dummy	No care

4.3.2.16 OPCODE_LOCK_FLASH_ACK

字段	大小	值	描述
命令	1	0x22	
填充	6	Dummy	No care

4.3.2.17 OPCODE_WRITE_RAM

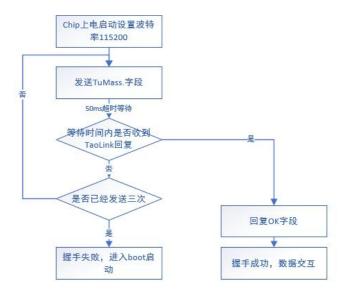
字段	大小	值	描述
命令	1	0x04	
地址	4	address	RAM 地址
长度	2	length	数据长度
数据	length		数据内容

4.3.2.18 OPCODE_WRITE_RAM_ACK

字段	大小	值	描述
命令	1	0x05	
地址	4	address	RAM 地址
长度	2	length	数据长度

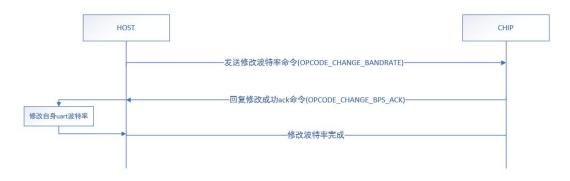
4.3.2.19 OPCODE_EXECUTE_CODE

字段	大小	值	描述
命令	1	0x15	
地址	4		程序段入口
填充	2	0	填充数据 0


4.3.2.20 OPCODE_EXECUTE_CODE_END

字段	大小	值	描述
命令	1	0x17	
填充	6	Dummy	No care

4.4 实现细节

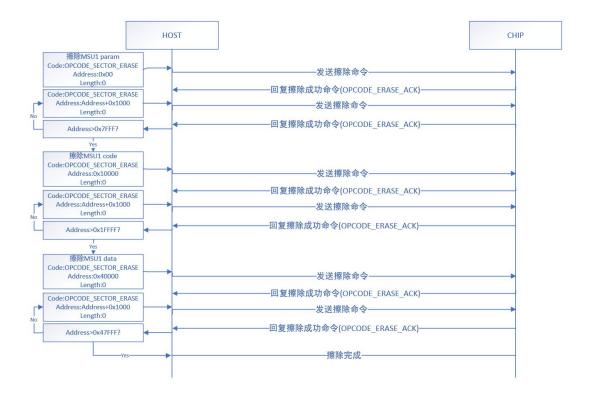

4.4.1 握手交互部分

4.4.2 烧录交互部分

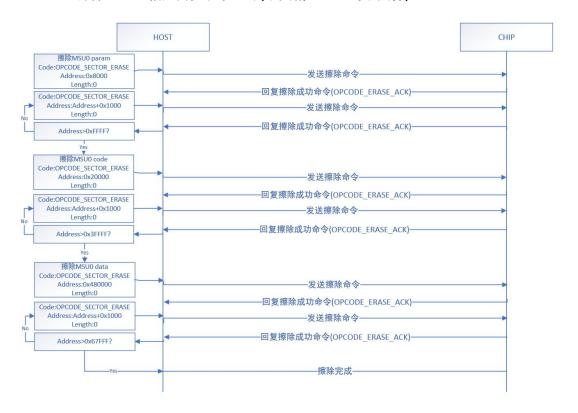
```
定义参数交互结构体
struct boot_param_header_s {
    uint8_t code;
    uint32_t address;
    uint16_t length;
}__attribute__((packed));
```

4.4.2.1 修改波特率,提升读写速度

4.4.2.2 下载 patch 并解锁 flash


4.4.2.3 擦除操作

	MSU1		MSU0			
	Param	Code flash 地	Data flash 地址	Param flash	Code flash 地	Data flash
	flash	址		地址	址	地址
	地址					
起	0x00	0x10000	0x40000	0x8000	0x20000	0x48000
始						
结	0x7FFF	0x1FFFF	0x47FFF	0xFFFF	0x3FFFF	0x67FFF
東						
Size	32K	64K	32K	32K	128K	128K


按照分区规划,每次以4K为单位,循环向被烧录端送擦除命令及起始地址。

4.4.2.3.1 擦除 MSU1 相关需要烧录区域

4.4.2.3.2 擦除 MSU0 相关需要烧录区域(不更新 MSU0 则不执行)

4.4.2.4 MSU1、MSU0 参数烧录

4.4.2.4.1 MSU1 参数烧录

此部分为固定参数,直接写入。

填入参数说明: MSU1 编译生成的 hex 镜像前 64K 为 CODE, 后 32K 为 DATA。

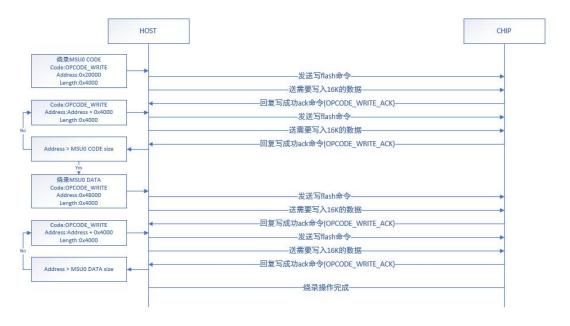
MSU1 code 大小: hex 镜像中前 64K 的最后 4 个 byte; MSU1 data 大小: hex 镜像中后 32K 的最后 4 个 byte。

4.4.2.4.2 MSU0 参数烧录(不更新 MSU0 则不执行)

此部分为固定参数,直接写入。

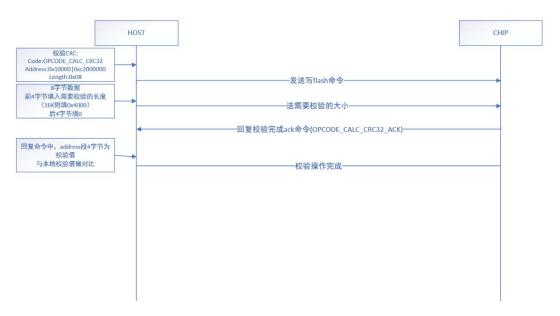
填入参数说明: MSU0 编译生成的 hex 镜像前 128K 为 CODE, 后 128K 为 DATA。

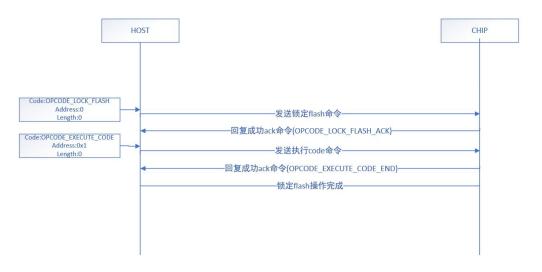

MSU0 code 大小: hex 镜像中前 128K 的最后 4 个 bytes; MSU0 data 大小: hex 镜像中前 128K 的最后 4 个 bytes。



4.4.2.5 MSU0、MSU1 hex 镜像烧录

4.4.2.5.1 烧录 MSU1 CODE、MSU1 DATA


4.4.2.5.2 烧录 MSU0 CODE、MSU0DATA(不更新 MSU0 则不执行)


4.4.2.6 CRC 校验(可在每段烧录完成以后进行烧录校验)

下面以烧录 MSU1 code 校验为例进行说明。

4.4.2.7 锁定 flash 操作

4.4.2.8 断开链接

4.5 注意事项

无